
Przegląd Programu
Zaawansowane szkolenie z Big Data technologies, distributed systems i real-time processing dla enterprise scale
Kluczowe Technologie
Apache Spark Ecosystem
Spark Core, SQL, Streaming, MLlib. Optimization techniques, cluster management, memory tuning i performance debugging.
Hadoop Distributed Ecosystem
HDFS, YARN, MapReduce, Hive, HBase. Cluster architecture, resource management i data governance patterns.
Apache Kafka & Stream Processing
Kafka Connect, Streams API, KSQL. Real-time data pipelines, event sourcing i stream analytics architectures.
Zaawansowane Podejście
Program skupia się na enterprise-grade implementations z naciskiem na scalability, fault tolerance i cost optimization. Pracujesz z multi-terabyte datasets na production-grade clusters. Każdy moduł obejmuje performance tuning, monitoring i troubleshooting techniques stosowane w Fortune 500 companies.
Curriculum Overview
Jak Działają Technologie
Hands-on methodology z distributed cluster environments i production-scale deployments
Cluster Setup
Konfiguracja multi-node environments z Docker Swarm i Kubernetes dla distributed computing
Data Ingestion
Massive data ingestion patterns z Kafka, Flume i cloud storage connectors dla terabyte datasets
Distributed Processing
Spark jobs optimization, resource allocation strategies i advanced transformations na cluster scale
Analytics & Serving
Real-time analytics, machine learning pipelines i high-performance serving layers
Distributed Architecture Patterns
Fault Tolerance
Replication strategies, checkpointing i automatic recovery mechanisms w distributed environments
Horizontal Scaling
Auto-scaling policies, dynamic resource allocation i load balancing for optimal performance
Data Locality
Optimizing computation placement, data movement minimization i network-aware scheduling
Oczekiwane Rezultaty
Advanced skills i enterprise-level competencies w Big Data technologies i distributed systems
Progression Timeline
Efficient RDD operations, DataFrame API mastery i Spark SQL optimization techniques
HDFS administration, YARN resource management i multi-tenant cluster operations
Real-time Kafka pipelines, windowing functions i event-time processing patterns
Complete data lake implementation z multi-petabyte capacity i cloud-native services
Advanced Success Metrics
Cluster Management Skills
Advanced technical assessment w distributed systems
Production Deployment
Successful production-grade system deployments
Senior Role Transition
Absolwentów przechodzi do Senior/Lead Data Engineer roles
Enterprise Impact Metrics
do Senior/Lead positions
w professional expertise
scale capability
z advanced skills
Kto Skorzysta
Advanced professionals gotowi na Big Data challenges i enterprise-scale distributed systems
Idealni Kandydaci
- Data Engineers z 2+ lat doświadczenia w SQL/Python
- Software Engineers przechodzący do Big Data
- DevOps Engineers zainteresowani data infrastructure
- System Architects planujący data platforms
- Absolwenci Data Engineering Foundations
Enterprise Use Cases
- Przejście do Senior/Lead Data Engineer roles
- Budowa enterprise data platforms
- Real-time analytics system implementation
- Migration do cloud-native architectures
- Consulting w Big Data transformations
Complex Challenges
- Petabyte-scale data processing requirements
- Sub-second latency w stream processing
- Multi-region data consistency challenges
- Cost optimization w cloud environments
- Legacy system integration z modern stacks
Advanced Problem Solving
Enterprise Challenges:
Ten program da Ci:
Technologie i Metodologia
Enterprise-grade Big Data stack z production-ready techniques i innovative distributed approaches
Big Data Stack
Advanced Techniques
-
Adaptive Query ExecutionCatalyst optimizer, code generation, vectorization
-
Dynamic Resource AllocationAuto-scaling, spot instances, cost optimization
-
Event-Time ProcessingWatermarks, windowing, late data handling
-
Data Lake OptimizationPartitioning strategies, Z-ordering, compaction
Cutting-Edge Innovation
-
Delta Lake ACID TransactionsTime travel, schema evolution, merge operations
-
Serverless ComputingAWS Glue, Azure Synapse, Google Dataflow
-
MLOps IntegrationFeature stores, model serving, A/B testing
-
Data Mesh PatternsDomain-driven architecture, data products
Enterprise Big Data Architecture
Jak Zacząć
Advanced enrollment options z prerequisite assessment i accelerated paths dla experienced professionals
Advanced Track
Kompletny 14-tygodniowy Big Data program
- Pełny Big Data stack
- 8 enterprise projektów
- Cluster access 24/7
- Group mentoring
- Industry certifications
Expert Track
Premium program z 1-on-1 expert mentoring
- Wszystko z Advanced Track
- 1-on-1 expert mentoring (6 sesji)
- Architecture review sessions
- Custom capstone project
- Priority job placement support
Accelerated
8-tygodniowy intensywny program
- Core technologies focus
- Prerequisite: Data Engineering exp
- 4 advanced projekty
- Fast-track certification
- Evening & weekend schedule
Prerequisites & Enrollment Process
Required Background:
Enrollment Steps:
Inne Kursy
Rozpocznij od podstaw lub kontynuuj z enterprise platform engineering
Data Engineering Foundations
10-tygodniowy kurs wprowadzający obejmujący SQL, Python dla inżynierii danych i podstawy ETL. Wprowadzenie do koncepcji hurtowni danych i Apache Airflow.
Data Platform Engineer Track
20-tygodniowy profesjonalny program budowy platform danych przedsiębiorstwa. DataOps, orkiestracja, monitoring i optymalizacja wydajności.
Master Big Data Technologies
Dołącz do kolejnej kohorty Big Data Technologies Program i opanuj distributed computing w enterprise scale. Następny start: 23 sierpnia 2025